织梦CMS - 轻松建站从此开始!

abg欧博官网|登陆|游戏|

Number Base Converter

时间:2025-11-13 22:42来源: 作者:admin 点击: 7 次
Free, fast, and powerful tools for web development, productivity, and everyday tasks. No registration required.

How to Use the Number Base Converter

Step-by-Step Instructions

Enter Your Number: Type the number you want to convert in the input field.

Select Input Base: Choose the base (radix) of your input number from the dropdown:

Binary (Base 2): Uses digits 0-1

Octal (Base 8): Uses digits 0-7

Decimal (Base 10): Uses digits 0-9

Hexadecimal (Base 16): Uses digits 0-9 and A-F

Other bases from 2 to 36 available

Convert: Click "Convert" or type to see instant conversions to all common bases.

View Results: See your number converted to:

Common bases (2, 8, 10, 16)

Extended bases (3-36)

Custom base of your choice

Copy Results: Click the copy button next to any result to copy it to clipboard.

Analyze: View properties and breakdown of your number below.

Understanding Number Bases

Binary (Base 2)

The fundamental language of computers, using only 0 and 1.

Digits: 0, 1

Place Values: ...8, 4, 2, 1 (powers of 2)

Example: 1101₂ = 1×8 + 1×4 + 0×2 + 1×1 = 13₁₀

Usage: Computer programming, digital electronics, data representation

Octal (Base 8)

Compact representation using digits 0-7, often used in Unix permissions.

Digits: 0, 1, 2, 3, 4, 5, 6, 7

Place Values: ...512, 64, 8, 1 (powers of 8)

Example: 175₈ = 1×64 + 7×8 + 5×1 = 125₁₀

Usage: File permissions, legacy computing, shorthand for binary

Decimal (Base 10)

The standard number system used in everyday life.

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Place Values: ...1000, 100, 10, 1 (powers of 10)

Example: 245₁₀ = 2×100 + 4×10 + 5×1

Usage: Mathematics, commerce, daily calculations

Hexadecimal (Base 16)

Efficient way to represent binary data, widely used in programming.

Digits: 0-9, A-F (where A=10, B=11, ..., F=15)

Place Values: ...4096, 256, 16, 1 (powers of 16)

Example: 2AF₁₆ = 2×256 + 10×16 + 15×1 = 687₁₀

Usage: Color codes, memory addresses, cryptography

Conversion Methods

Converting TO Decimal

Multiply each digit by its place value and sum:

Example: 1101₂ to Decimal
1×2³ + 1×2² + 0×2¹ + 1×2⁰
= 1×8 + 1×4 + 0×2 + 1×1
= 8 + 4 + 0 + 1 = 13₁₀

Converting FROM Decimal

Repeatedly divide by the target base, collect remainders:

Example: 13₁₀ to Binary
13 ÷ 2 = 6 remainder 1
6 ÷ 2 = 3 remainder 0
3 ÷ 2 = 1 remainder 1
1 ÷ 2 = 0 remainder 1
Read bottom-up: 1101₂

Binary ↔ Hex Shortcut

Group binary digits in sets of 4:

Example: 11010111₂ to Hex
1101 0111
D₁₆ 7₁₆
= D7₁₆

Binary ↔ Octal Shortcut

Group binary digits in sets of 3:

Example: 110101₂ to Octal
110 101
6₈ 5₈
= 65₈

Common Applications

Web Design

Color Codes: #FF0000 (red in hex)

RGB Values: rgb(255, 0, 0)

Transparency: #FF0000AA (with alpha)

Computer Science

Memory Addresses: 0x7FFF0000

Bitwise Operations: AND, OR, XOR

Data Representation: ASCII, Unicode

Cryptography

Hash Values: SHA-256 in hex

Keys: Base64 encoding

Checksums: MD5, CRC32

Networking

IP Addresses: Dotted decimal

MAC Addresses: Hex pairs

Subnet Masks: Binary patterns

Quick Reference Tables

Common Conversions Decimal Binary Octal Hex
0   0000   0   0  
1   0001   1   1  
2   0010   2   2  
3   0011   3   3  
4   0100   4   4  
5   0101   5   5  
6   0110   6   6  
7   0111   7   7  
8   1000   10   8  
9   1001   11   9  
10   1010   12   A  
11   1011   13   B  
12   1100   14   C  
13   1101   15   D  
14   1110   16   E  
15   1111   17   F  

Powers Reference Power 2ⁿ 8ⁿ 16ⁿ
0   1   1   1  
1   2   8   16  
2   4   64   256  
3   8   512   4,096  
4   16   4,096   65,536  
5   32   32,768   1,048,576  
6   64   262,144   16,777,216  
7   128   2,097,152   268,435,456  
8   256   16,777,216   4,294,967,296  

Frequently Asked Questions

Why do programmers use hexadecimal?

Hexadecimal is more compact than binary (4 bits = 1 hex digit) and easier to read than long binary strings. It's also easy to convert between hex and binary mentally, making it ideal for representing binary data like memory addresses and color values.

What bases can use letters?

Any base greater than 10 uses letters. Base 11 uses 0-9 and A, base 12 uses 0-9 and A-B, and so on up to base 36 which uses 0-9 and A-Z. Letters are case-insensitive.

What's the largest base supported?

Base 36 is the practical maximum, using all digits 0-9 and letters A-Z. This gives 36 unique symbols. Higher bases would require additional symbols beyond the standard alphabet.

How do I convert between any two non-decimal bases?

The easiest method is to convert to decimal as an intermediate step. Convert from the source base to decimal, then from decimal to the target base. Direct conversion is possible but more complex.

What are common mistakes in base conversion?

Common errors include: forgetting that digits must be less than the base (e.g., 8 is invalid in octal), confusing letter values in hex (A=10, not 1), and misaligning place values when converting.

Tips & Tricks

Quick Mental Conversions

Binary to Hex: Group by 4 bits from right

Binary to Octal: Group by 3 bits from right

Hex F = Binary 1111 = Decimal 15

Powers of 2: 2, 4, 8, 16, 32, 64, 128, 256...

Double-check: Converting back should give original

Input Tips

Letters in bases >10 are case-insensitive

No spaces or commas in numbers

Leading zeros are ignored

Use standard notation (no subscripts needed)

Decimal point not supported (integers only)

Verification Methods

Convert result back to verify accuracy

Check digit validity for the base

Use multiple methods to confirm

Test with known values first

Watch for overflow in large numbers

(责任编辑:)
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:
发布者资料
查看详细资料 发送留言 加为好友 用户等级: 注册时间:2025-12-15 17:12 最后登录:2025-12-15 17:12
栏目列表
推荐内容