织梦CMS - 轻松建站从此开始!

abg欧博官网|登陆|游戏|

Making the Mandelbrot Fractal in Desmos Online Gr

时间:2025-08-27 05:35来源: 作者:admin 点击: 0 次
I use to play with the iterated sequence $$z_0=0+i0, \quad c=c_1+ic_2,\qquad \quad z_{n+1}=z_n^2+c,$$ and drawing the approximation to the Mandelbrot

I use to play with the iterated sequence $$z_0=0+i0, \quad c=c_1+ic_2,\qquad \quad z_{n+1}=z_n^2+c,$$ and drawing the approximation to the Mandelbrot set, in which $|z_n|\leq r$, to some $r>0$. Here you find how to draw some things with Phyton.

If you write $z=x+iy$, you can see that $$z_n^2+c=(x_n^2-y_n^2+c_1)+i(2x_ny_n+c_2).$$

This gives you a glimpse to define the function $$f(x,y)=(x^2-y^2,2xy)=(f_1(x,y),f_2(x,y))$$ and play with things like $$f(f(x,y))+(x,y)=(f_1(x,y)^2-f_2(x,y)^2+x,2f_1(x,y)f_2(x,y)+y),$$ that can be written as $$g_{n+1}(x,y)=f(g_{n}(x,y))+(x,y),$$ with $$g_1(x,y)=f(x,y).$$ Then you can draw the implicitly curve $|g_n(x,y)|=r$ as you can see here in Desmos.

With the implicit given curves in mind you can use your preferred programing language to draw the curves and animate it.

You can see here the second part of the video you mention in your question.

An interesting discussion on how to parametrize the boundary of the Mandelbrot set that I found on SearchOnMath is this thread.

(责任编辑:)
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:
发布者资料
查看详细资料 发送留言 加为好友 用户等级: 注册时间:2025-08-28 17:08 最后登录:2025-08-28 17:08
栏目列表
推荐内容